Skip to content
You are not logged in |Login  

LEADER 00000cam  2200565Ii 4500 
001    ocn944502145 
003    OCoLC 
005    20200419054840.4 
006    m     o  d         
007    cr cnu|||unuuu 
008    160315s2016    sz a    ob    001 0 eng d 
020    9783319295589|q(electronic book) 
020    3319295586|q(electronic book) 
020    3319295578|q(print) 
020    9783319295572|q(print) 
020    |z9783319295572|q(print) 
024 7  10.1007/978-3-319-29558-9|2doi 
035    (OCoLC)944502145 
040    GW5XE|beng|erda|epn|cGW5XE|dYDXCP|dUPM|dOCLCF|dCOO|dUAB
       |dJG0|dOCLCQ|dIAD|dJBG|dICW|dZ5A|dILO|dICN|dOCLCQ|dESU
       |dIOG|dWY@|dU3W|dCEF|dVTS|dOCLCQ|dWYU|dEBLCP|dFIE|dW2U
       |dUX1|dAUD|dOCLCQ 
049    STJJ 
050  4 QA387 
066    |c(S 
072  7 PBG|2bicssc 
072  7 MAT014000|2bisacsh 
072  7 MAT038000|2bisacsh 
082 04 512/.482|223 
100 1  Fischer, Veronique,|eauthor. 
245 10 Quantization on Nilpotent lie groups /|cVeronique Fischer,
       Michael Ruzhansky. 
264  1 Switzerland :|bBirkhäuser,|c2016. 
300    1 online resource (xiii, 557 pages) :|bcolor 
       illustrations. 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
490 1  Progress in mathematics,|x0743-1643 ;|vvolume 314 
504    Includes bibliographical references and index. 
505 0  Preface -- Introduction -- Notation and conventions -- 1 
       Preliminaries on Lie groups -- 2 Quantization on compact 
       Lie groups -- 3 Homogeneous Lie groups -- 4 Rockland 
       operators and Sobolev spaces -- 5 Quantization on graded 
       Lie groups -- 6 Pseudo-differential operators on the 
       Heisenberg group -- A Miscellaneous -- B Group C* and von 
       Neumann algebras -- Schrödinger representations and Weyl 
       quantization -- Explicit symbolic calculus on the 
       Heisenberg group -- List of quantizations -- Bibliography 
       -- Index. 
506    Open Access.|5GW5XE 
520    This book presents a consistent development of the Kohn-
       Nirenberg type global quantization theory in the setting 
       of graded nilpotent Lie groups in terms of their 
       representations. It contains a detailed exposition of 
       related background topics on homogeneous Lie groups, 
       nilpotent Lie groups, and the analysis of Rockland 
       operators on graded Lie groups together with their 
       associated Sobolev spaces. For the specific example of the
       Heisenberg group the theory is illustrated in detail. In 
       addition, the book features a brief account of the 
       corresponding quantization theory in the setting of 
       compact Lie groups. The monograph is the winner of the 
       2014 Ferran Sunyer i Balaguer Prize. 
588 0  Online resource; title from PDF title page (SpringerLink, 
       viewed March 15, 2016). 
590    SpringerLink|bSpringer Nature Open Access eBooks 
650  0 Nilpotent Lie groups. 
650  7 Nilpotent Lie groups.|2fast|0(OCoLC)fst01037753 
700 1  Ruzhansky, M.|q(Michael),|eauthor. 
776 08 |iPrinted edition:|z9783319295572 
830  0 Progress in mathematics (Boston, Mass.) ;|vv. 314.|x0743-
       1643 
880 8  |6505-00/(S|a3.1.5 Invariant differential operators on 
       homogeneous Lie groups3.1.6 Homogeneous quasi-norms; 3.1.7
       Polar coordinates; 3.1.8 Mean value theorem and Taylor 
       expansion; Taylor expansion; 3.1.9 Schwartz space and 
       tempered distributions; 3.1.10 Approximation of the 
       identity; 3.2 Operators on homogeneous Lie groups; 3.2.1 
       Left-invariant operators on homogeneous Lie groups; 3.2.2 
       Left-invariant homogeneous operators; 3.2.3 Singular 
       integral operators on homogeneous Lie groups; 3.2.4 
       Principal value distribution; 3.2.5 Operators of type ν = 
       0; 3.2.6 Properties of kernels of type ν, Re ν E [0,Q) 
914    ocn944502145 
994    92|bSTJ 
Location Call No. Status
 University of Saint Joseph: Pope Pius XII Library - Internet  WORLD WIDE WEB E-BOOK Springer    Downloadable
Please click here to access this Springer resource
 University of Saint Joseph: Pope Pius XII Library - Internet  WORLD WIDE WEB E-BOOK Springer    Downloadable
Please click here to access this Springer resource