Skip to content
You are not logged in |Login  
     
Limit search to available items
Book Cover
Bestseller
BestsellerE-Book
Author Klingbeil, Harald, author.

Title Theoretical foundations of synchrotron and storage ring RF systems / Harald Klingbeil, Ulrich Laier, Dieter Lens.

Publication Info. Cham : Springer, [2015]
©2015

Copies

Location Call No. Status
 University of Saint Joseph: Pope Pius XII Library - Internet  WORLD WIDE WEB E-BOOK Springer    Downloadable
Please click here to access this Springer resource
Description 1 online resource (xxxiv, 432 pages) : illustrations (some color).
PDF
text file
Series Particle acceleration and detection
Particle acceleration and detection.
Note Title from PDF title page (viewed on September 18, 2014).
Contents Introduction -- Theoretical Basics -- RF Acceleration -- RF Cavities -- Advanced Topics -- Power Amplifiers -- Closed-Loop Control -- Appendix -- Bibliography -- Tables.
Machine generated contents note: References -- 2.1. Fourier Analysis and Application to Beam Signals -- 2.1.1. Fourier Series -- 2.1.2. Spectrum of a Dirac Comb -- 2.1.3. Different Representations of the Fourier Series -- 2.1.4. Discrete Fourier Transform -- 2.1.5. Fourier Transform -- 2.1.6. Consequences for the Spectrum of the Beam Signal -- 2.2. Laplace Transform -- 2.3. Transfer Functions -- 2.4. Mathematical Statistics -- 2.4.1. Gaussian Distribution -- 2.4.2. Probabilities -- 2.4.3. Expected Value -- 2.4.4. Unbiasedness -- 2.4.5. Uniform Distribution -- 2.5. Bunching Factor -- 2.6. Electromagnetic Fields -- 2.7. Special Relativity -- 2.8. Nonlinear Dynamics -- 2.8.1. Equivalence of Differential Equations and Systems of Differential Equations -- 2.8.2. Autonomous Systems -- 2.8.3. Existence and Uniqueness of the Solution of Initial Value Problems -- 2.8.4. Orbits -- 2.8.5. Fixed Points and Stability -- 2.8.6. Flows of Linear Autonomous Systems -- 2.8.7. Topological Orbit Equivalence -- 2.8.8. Classification of Fixed Points of an Autonomous Linear System of Second Order -- 2.8.9. Nonlinear Systems -- 2.8.10. Characteristic Equation -- 2.9. Continuity Equation -- 2.10. Area Preservation in Phase Space -- 2.10.1. Velocity Vector Fields -- 2.10.2. Maps -- 2.10.3. Liouville's Theorem -- 2.11. Hamiltonian Systems -- 2.11.1. Example for Motivation -- 2.11.2. Arbitrary Number of Variables -- 2.11.3. Flow in Phase Space -- 2.11.4. Fixed Points of a Hamiltonian System in the Plane -- 2.11.5. Hamiltonian as Lyapunov Function -- 2.11.6. Canonical Transformations -- 2.11.7. Action-Angle Variables -- 2.11.8. LC Circuit with Nonlinear Inductance -- 2.11.9. Mathematical Pendulum -- 2.11.10. Vlasov Equation -- 2.11.11. Outlook -- References -- 3.1. Centripetal Force -- 3.2. Simplified Model Synchrotron -- 3.3. Tracking Equations -- 3.4. Phase Slip Factor and Transition Energy -- 3.5. Accelerating Voltage -- 3.6. Synchrotron Oscillation -- 3.7. Principal Axes -- 3.8. Hamiltonian -- 3.9. Separatrix -- 3.10. Symmetry with Respect to Transition Energy and Sign of Charge -- 3.11. Orbits -- 3.12. Bucket Area -- 3.13. Approximation of Bucket Area -- 3.14. Ratio of Bucket Height to Bucket Length -- 3.15. Choice of the Harmonic Number -- 3.16. Revolution Time in the Stationary Bucket -- 3.17. Bunch Area -- 3.18. Ratio of Bunch Height to Bunch Length -- 3.19. Frequency and RF Amplitude -- 3.20. Voltage Versus Bunch Length -- 3.21. Coasting Beam -- 3.22. Ramps -- 3.23. Multicavity Operation -- 3.24. Bunch Shape -- References -- 4.1. Ferrite-Loaded Cavities -- 4.1.1. Permeability of Magnetic Materials -- 4.1.2. Magnetoquasistatic Analysis of a Ferrite Cavity -- 4.1.3. Parallel and Series Lumped Element Circuit -- 4.1.4. Frequency Dependence of Material Properties -- 4.1.5. Quality Factor of the Cavity -- 4.1.6. Impedance of the Cavity -- 4.1.7. Length of the Cavity -- 4.1.8. Differential Equation and Cavity Filling Time -- 4.1.9. Power Amplifier -- 4.1.10. Cooling -- 4.1.11. Cavity Tuning -- 4.1.12. Resonant Frequency Control -- 4.1.13. Further Complications -- 4.1.14. Cavity Configurations -- 4.1.15. GSI Ferrite Cavities in SIS18 -- 4.1.16. Further Practical Considerations -- 4.1.17. Magnetic Materials -- 4.2. Cavity Excitation -- 4.3. Transit Time Factor -- 4.4. Pillbox Cavity -- 4.4.1. TM Modes -- 4.4.2. TE Modes -- 4.4.3. Energy Considerations for the TM010 Mode -- 4.4.4. Practical Considerations -- 4.4.5. Example -- References -- 5.1. Different Phase Space Descriptions -- 5.1.1. Phase Space (φ, δ) -- 5.1.2. Relation to Phase Space (Δt, ΔW) -- 5.1.3. Scale Transformation with Invariant Bucket Area -- 5.2. Special Remarks on Linear ODE's of Second Order -- 5.2.1. Removing the Attenuation Term -- 5.2.2. Solution by Integration of the Phase -- 5.2.3. Discussion of a Sample Solution -- 5.3. Adiabaticity -- 5.3.1. Pendulum with Variable Length -- 5.3.2. Iso-Adiabatic Ramps -- 5.4. Bunch Compression and Unmatched Bunches -- 5.5. Dual-Harmonic Operation and Barrier Buckets -- 5.5.1. Barrier Bucket Signal Generation -- 5.5.2. Phase and Amplitude Relations for Dual-Harmonic Operation -- 5.6. Bunch Description by Means of Moments -- 5.6.1. Phase Oscillations -- 5.6.2. Amplitude Oscillations -- 5.6.3. Linearization -- 5.6.4. RMS Emittance -- 5.7. Longitudinal Bunch Oscillations -- 5.7.1. Coherent Dipole Mode -- 5.7.2. Quadrupole Mode -- 5.7.3. Generalization -- 5.7.4. Spectrum of the Dipole Oscillation -- 5.8. Simple Space Charge Model -- 5.8.1. Field in the Rest Frame of the Bunch -- 5.8.2. Transformation to the Rest Frame of the Synchrotron -- 5.8.3. Longitudinal Electric Field -- 5.8.4. Space Charge Impedance -- References -- 6.1. Gridded Vacuum Tubes -- 6.1.1. Diode -- 6.1.2. Triode -- 6.1.3. Tetrode -- 6.2. Tube Amplifiers -- 6.3. Tube Operation -- References -- 7.1. Basics of Continuous-Time Feedback Systems -- 7.1.1. Linear Time-Invariant Systems -- 7.1.2. State-Space Representation -- 7.1.3. Linearization of Nonlinear Systems -- 7.1.4. Dynamic Response of LTI Systems -- 7.1.5. Stability -- 7.2. Standard Closed Loop -- 7.3. Example: Amplitude Feedback -- 7.4. Analysis and Stability -- 7.4.1. Routh-Hurwitz Stability Criterion -- 7.4.2. Bode Plots and Nyquist Criterion -- 7.4.3. Time Delay -- 7.4.4. Steady-State Accuracy -- 7.5. Feedback Design -- 7.5.1. Tradeoff Between Performance and Robustness -- 7.5.2. Design Goals and Specifications -- 7.5.3. PID Control -- 7.5.4. Stability Issues for Nonlinear Systems -- References -- A.1. Description of an Ellipse in the Plane -- A.2. Path Length and Curvature -- A.2.1. Path Length -- A.2.2. Curvature -- A.2.3. Centripetal Force -- A.3. Some Results Concerning Transverse Optics in Synchrotrons -- A.4. Characterization of Fixed Points -- A.5. Change of Variables for Multiple Integrals -- A.6. Characteristic Equation and Companion Matrix -- A.7. Cavity Response to Excitations -- A.7.1. Amplitude Jumps -- A.7.2. Phase Jumps -- A.8. Example for Adiabaticity -- A.9. Tables and Diagrams -- References.
Summary This course-tested text is an ideal starting point for engineers and physicists entering the field of particle accelerators. The fundamentals are comprehensively introduced, derivations of essential results are provided, and a consistent notation style used throughout the book allows readers to quickly familiarize themselves with the field, providing a solid theoretical basis for further studies. Emphasis is placed on the essential features of the longitudinal motion of charged particle beams, together with the corresponding RF generation and power amplification devices for synchrotron and storage ring systems. In particular, electrical engineering aspects such as closed-loop control of system components are discussed. The book also offers a valuable resource for graduate students in physics, electronics engineering, or mathematics looking for an introductory and self-contained text on accelerator physics.
Local Note Springer Nature Springer Nature Open Access eBooks
Subject Synchrotrons.
Storage rings.
Physics.
Particle Acceleration and Detection, Beam Physics.
Microwaves, RF and Optical Engineering.
Measurement Science and Instrumentation.
Nanostructure science and technology.
Mathematical Applications in the Physical Sciences.
TECHNOLOGY & ENGINEERING -- Technical & Manufacturing Industries & Trades.
Storage rings. (OCoLC)fst01133995
Synchrotrons. (OCoLC)fst01141107
Indexed Term mathematische natuurkunde
mathematical physics
fysica
physics
nanotechnologie
nanotechnology
meting
measurement
meettechnieken
measurement techniques
engineering
Physics (General)
Fysica (algemeen)
Added Author Laier, Ulrich, author.
Lens, Dieter, author.
Other Form: Printed edition: 9783319071879
ISBN 9783319071886 (electronic book)
3319071882 (electronic book)
3319071874 (print)
9783319071879 (print)
9783319071879
Standard No. 10.1007/978-3-319-07188-6 doi
-->
Add a Review